DEPT. OF MATHEMATICS
 JHARGRAM RAJ COLLEGE
 B.Sc(H) Sem - III , INTERNAL ASSESSMENT-1 ${ }^{\text {st }}$, 2018-19
 Sub: MATHEMATICS, Course - C6

Full Marks: 10
Time: $\mathbf{3 0} \mathbf{m}$.
Answer any five questions:

1. Let G be a commutative group. Prove that the set $\mathrm{H}=\{a \in G: o(a)$ divides 10$\}$ is a subgroup of G.
2. Find the elements of order 5 in Z_{20}.
3. Let $S=\left\{1, \alpha, \alpha^{2}, \ldots, \alpha^{5}\right\}$ be a group under multiplication. Show that $(S$, .) be a cyclic group where $\alpha=\cos \frac{\pi}{3}+i \sin \frac{\pi}{3}$.
4. Prove that a cyclic group of prime order has no proper non-trivial subgroup.
5. Verify that whether the pair of groups $\left(\mathbb{R}^{+},.\right)$and $(\mathbb{R},+)$ are isomorphic or not.
6. Prove that if a group G has a unique subgroup of order 2018 then that subgroup is a Normal subgroup of G.
7. Prove that order of the group $\operatorname{Aut}\left(\mathbb{Z}_{p}\right)$ is $p-1, p$ is a prime.
8. Find the Centre of Dihedral group of Order 8.

Time: $\mathbf{3 0} \mathbf{m}$.

Answer any five questions:

1. Let G be a group and A be a non-empty subset of G . Define the normalizer of A in G and show that the normalizer of A in G is a subgroup of G .
2. Find the order of the permutation $(123)(56)$ in S_{6}.
3. Let G be an infinite cyclic group generated by a. Prove that a and a^{-1} are the only generators of the cyclic group.
4. Show that $\left(\mathbb{Z}_{4},+\right)$ is a cyclic group. Also find its generators.
5. Let G and G^{\prime} be two finite groups and $\theta: G \rightarrow G^{\prime}$ be an epimorphism. Prove that $o\left(G^{\prime}\right) \mid o(G)$.
6. Prove that the additive groups \mathbb{Z} and $\mathbb{Z} \times \mathbb{Z}$ are not isomorphic.
7. Find the number of elements of order 6 in the group $\mathbb{Z}_{6} \times \mathbb{Z}_{4}$.
8. If $\operatorname{gcd}(m, n)=1$, Prove that $\mathbb{Z}_{m} \times \mathbb{Z}_{n} \cong \mathbb{Z}_{m n}$..

DEPT. OF MATHEMATICS
 JHARGRAM RAJ COLLEGE
 B.Sc(H) Sem - III , INTERNAL ASSESSMENT-1 ${ }^{\text {st }}$, 2019-20
 Sub: MATHEMATICS, Course - C6

Full Marks: 10
Answer any five questions:

Time: $\mathbf{3 0} \mathbf{~ m}$. $(2 \times 5=10)$

1. Let G be a commutative group. Prove that the set $\mathrm{H}=\{a \in G: o(a)$ divides 15$\}$ is a subgroup of G .
2. Find the elements of order 5 in Z_{10}.
3. Prove that nth roots of unity form a cyclic group under multiplication.
4. Prove that a group of prime order is cyclic.
5. Let G be a group and $a \in G$ such that $o(a)=n \& a^{m}=e$ for some $m \in \mathbb{N}$. Prove that $n \mid m$.
6. Let G be a group and $Z(G)=\{x \in G: g x=x g \forall g \in G\}$. Prove that $Z(G)$ is a subgroup of G.
7. Prove that in a group G $a^{2}=e \forall a \in G$. Prove that G is Abelian.
8. Prove that $(\mathbb{Z}, *)$ is a group where $*$ is defined by $a * b=a+b+1 \forall a, b \in \mathbb{Z}$.

B.Sc(H) Sem - III , INTERNAL ASSESSMENT-2nd, 2019-20
 Sub: MATHEMATICS, Course - C6

Full Marks: 10
Time: $\mathbf{3 0} \mathbf{m}$.
Answer any five questions:

1. Prove that a group of order 27 must have a subgroup of order 3 .
2. Let H be a subgroup of a group G and $[G: H]=2$ then show that H is a normal in G .
3. Prove that if a group G has a unique subgroup H of order 2019 then show that H is a Normal in G.
4. If H be a subgroup of a commutative group G then prove that the quotient group G / H is commutative.
5. Find all homomorphisms from the group $\left(\mathbb{Z}_{6},+\right)$ to $\left(\mathbb{Z}_{4},+\right)$.
6. Verify that whether the groups $\left(\mathbb{Z}_{6},+\right)$ and S_{3} are isomorphic or not.
7. Let G be a group of order 9 and H be a group of order 6 . Show that there does not exist a homomorphism of G onto H .
8. Find the Centre of Dihedral group of order 8 .
